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NASA TTF-10 , 294 

METHOD OF CALCULATING TEE EFFECT OF A GUST ON AN 
ARBITRARY T H I N  WING 

S. M. Belotserkovskiy 

ABSTRACT 

Development of a numerical method of ca l cu la t ing  

unsteady flow pas t  a t h i n  wing moving i n  an i d e a l  

incompressible medium with t h e  a i d  of a diagram of a 

supporting surface. Since t h e  t i m e  and coordinate 

dependences of t h e  boundary conditions on the  wing 

sur face  can be any desired,  it is shown t h a t  t h e  

proposed method can be used t o  study aper iodic  motion 

of t h e  wing as a s o l i d  body, a r b i t r a r y  deformations 

of the  wing, en t ry  of the  wing i n t o  a gus t ,  t h e  e f f e c t  

of a weak shock wave on the  wing, etc. The method i s  

s a i d  t o  be applicable t o  monoplane wings of any shape 

i n  t h e  plane, t o  annualr wings, t o  systems of similar 

wings, etc. 

A d e t a i l e d  summary of articles which compute t h e  

inf luence  of a gust on a wing i s  contained i n  t h e  

monographs (Ref. 1, 2). Without discussing t h i s  

summary, w e  would l i k e  t o  poin t  ou t  t h a t  t h e  e f f e c t i v e  

so lu t ion  of t h e  problem is only obtained f o r  a p r o f i l e  

i n  t h e  case of subsonic ve loc i t i e s .  



1. Main Assumptions of the Method. 

L e t  us assume t h a t  an a r b i t r a r y ,  t h i n  supporting sur face  performs 

unsteady motion as a s o l i d  body, o r  i s  deformed and e n t e r s  gradually o r  

instantaneously i n t o  a gust. I f  w e  know t h e  c h a r a c t e r i s t i c s  of t h e  

gus t ,  and t h e  laws of motion and deformation of the body, w e  may r e a d i l y  

determine t h e  normal ve loc i ty  components corresponding t o  them on t h e  

sur face  of the wing, and it may thus be assumed t h a t  they are known. 

The normal component of t he  disturbed ve loc i ty  Wn, produced during t h e  

motion of t h e  supporting sur face ,  m u s t  compensate f o r  them at  any moment 

of t i m e  (condition of smooth flow). W e  should poin t  out t h a t ,  wi th in  

t h e  framework of t h e  l i n e a r  theory t o  be considered later on, t h e  inter- 

ac t ion  of t h e  gus t ,  t he  motion of the  wing as a s o l i d  body, and the  

deformation of i t s  sur face  may be  s tudied  independently. 

For purposes of de f in i t i on ,  we s h a l l  i nves t iga t e  the  monoplane 

wing of an a r b i t r a r y ,  bu t  symmetrical, form i n  a plane. L e t  us introduce 

a moving coordinate system -2, which is  connected with t h e  wing, with 

t h e  o r i g i n  a t  t h e  middle of t he  root chord b (Figure 1). 

t h a t  t h e  main ve loc i ty  (which does no t  depend on t h e  time t) of t h e  wing 

W e  s h a l l  assume 

Uo is prallel  t o  t he  root  chord (Ox ax i s ) .  

I n  t h e  genera l  case, t h e  boundary conditions a t  t h e  wing may be 

represented as follows 

/51* - 

* Note: Numbers i n  t h e  margin ind ica t e  pagination i n  t h e  o r i g i n a l  fore ign  
t e x t .  
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Figure 1 

H e r e  xo, zo are coordinates of a poin t  on the  wing sur face ;  T -- 
dimensionless t i m e ;  and c -- a certain normalization, dimensionless con- 

s t a n t .  For example, i t  is advantageous t o  select c s o  t h a t  If I < 1 f o r  

t h e  confined r i g h t  por t ions  of (1.1). In t h e  l i n e a r  problem, i t  may be 

assumed that f = 0 i n  t h e  case of T < 0. 

i f  t h e  s o l i d  wing moves a t  a zero angle of a t t a c k  and gradually en te r s  

a sharp ly  confined gus t ,  then t h e  function f = 0 i n  t h e  wing po r t ion  

which does not en te r  t h e  gust.  

152 

W e  should a l s o  poin t  out t h a t ,  

It may be a s smed  t h a t  t he  perturbed motion of t h e  l i q u i d  outs ide  

of t h e  wing, and the  v o r t i c a l  t rack  behind it ,  is a p o t e n t i a l  motion. 

I n  t h e  case of both steady and unsteady motions, t h e  p o t e n t i a l  of t h e  

perturbed v e l o c i t i e s  w i l l  s a t i s f y  t h e  Laplace equation. The pressure 

must change continuously a t  t h e  vortex sheet behind t h e  wing, and t h e  

Chaplygin-Zhukovskiy condition i s  s a t i s f i e d  a t  t h e  t r a i l i n g  edges of 

t h e  wing. 

I n  the case of a r b i t r a r y  unsteady motion, t he  pressure d i f fe rence  

Ap at t h e  lower and upper wing surfaces may be expressed by t h e  i n t e n s i t y  

3 



Figure 2 

of t he  

" in  a s m a l l  region" (Ref .  3) 

attached vortex layer  y+ on the  bas i s  of t he  Zhukovskiy theorem 

A P  = - P S + W ~ ~  (1.2) 

Here WOOn i s  the  normal t o  the  vortex axis y+ corresponding t o  t h e  

relative ve loc i ty  of the medium at a point  

i s  the  medium density.  

As is  known, t h e  veloci ty  poten t ia l  corresponding t o  the  vortex 

i n  the  vortex layer ,  and p 

sur face  or tO discrete vor t i ce s  

According t o  (1.2) ,  i f  the  normal component of t he  r e l a t i v e  medium ve loc i ty  

equals  zero,  then there  is  no pressure difference on the  f r ee  surface.  

Consequently, t he  axes of the  free  vo r t i ce s  must be directed over the  

l o c a l  veloci ty  of t he  med ium,  o r  these vor t ices  must move a t  a ve loc i ty  

equal  t o  it. 

assumed t h a t  t h i s  ve loc i ty  equals UO. 

have 

s a t i s f i e s  t he  Laplace equation. 

Within the framework of t he  l i n e a r  theory, i t  may be 

Instead of (1.2), w e  s h a l l  then 
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Figure 3 

The i n t e n s i t y  of the attached v o r t i c e s ,  whose axes are perpendicular 

t o  t h e  ve loc i ty  UO, is  designated by y+,. 

and y+, are shown i n  Figure 1. 

l aye r ,  s eve ra l  conditions of t h e  problem are automatically f u l f i l l e d .  

It is  only necessary t o  s e l e c t  the i n t e n s i t y  of t h i s  l aye r  i n  such a way 

t h a t  t he  conditions of smooth flow and of Chaplygin-Zhukovskiy are fu l -  

f i l l e d .  

The p o s i t i v e  d i r ec t ions  bp 

Thus, i f  t he  wing i s  replaced by a vortex 

The b a s i c  concept of t he  numerical method f o r  solving t h i s  problem, 

which w i l l  be discussed below, cons is t s  of changing from continuous dis- 

t r i b u t i o n s  and processes t o  d i sc re t e  ones. 

/53 

I n  t h e  f i r s t  place,  t h e  continuously d i s t r i b u t e d  vortex l aye r ,  which 

rep laces  t h e  wing, is  approximately modeled by a system of d i s c r e t e  vor- 

tices. However, i n  con t r a s t  t o  the procedure i n  (Ref. 3, 41, t h i s  subs t i -  

t u t i o n  is perfowed here  not f o r  the attached vortex layer ,  bu t  f o r  t h e  

t o t a l  l a y e r  cons is t ing  of f r e e  and 

f r e e  v o r t i c e s  behind the  wing (Figure 2).  

I n  the  second p lace ,  the  continuous process of changing the  boundary 

attached vo r t i ce s  on t h e  wing and 

condition and c i r c u l a t i o n  with t i m e  i s  replaced by a step-wise process. 

5 
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Figure 4 

At specific moments of time, there is a jump-like change in the boundary 

conditions and circulations, and the circulations do not change in the 

intervals between them. Corresponding to this, the free vortices converge 

with the attached vortices at discrete moments in time (Figure 3). 

2. 

For monoplane wings, oblique, horseshoe vortices will be the main 

Vortex model of the wing. 

elementary vortex systems (Figure 4 ) .  The circulations of the transverse 

vortex and the longitudinal (parallel to the velocity UO) semi-infinite 

vortex are constant and equal r*. 

produced by such a vortex system in the x*, z * ,  plane may be represented 

in the following form 

According to (Ref. 3), the velocity 

The dimensionless function, whose expression is given in (Ref. 3 ) ,  is 

designated by wy (50, 50, x). 
'&e transition from the continuous change in circulation with time to a 

discrete change makes it possible to regard the indicated stationary 

vortex as the basic elementary system. Let us assume that the circulation 
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Figure 5 

of t h e  attached 

c e r t a i n  period of t i m e  t by the  quantity AT+. 

by t h e  descent of t h e  t ransverse  f r ee  vortex of c i r cu la t ion  AI'+. 

vortex r* on an a r b i t r a r y  wing element changes i n  a 

This w i l l  be accompanied 

A t  

t he  t i m e  t + A t ,  t he  vortex system shown i n  Figure 5 is  obtained, 

i n s t ead  of t h e  oblique s t a t iona ry  vortex (Figure 4).  

W e  should poin t  out t h a t  t h e  closed vortex filament ABCD of constant 

c i r c u l a t i o n  N+ may be regarded as t h e  sum of two t ransverse  v o r t i c e s  

AB and CD of equally opposed c i r cu la t ion  with t h e  s e d - i n f i n i t e  longi- 

t ud ina l  v o r t i c e s  corresponding t o  them. 

It is  advantageous t o  replace t h e  continuous vortex l a y e r  by dis- 

crete v o r t i c e s  d i r e c t l y  on the  wing j u s t  as w a s  done i n  t h e  s t a t iona ry  

case (Ref. 3) and i n  the  problem of harmonic wing o s c i l l a t i o n s  (Ref. 4). 

The wavy l i n e s  i n  Figure 2 i nd ica t e  vo r t i ce s ,  and t h e  crosses - / 54 

i n d i c a t e  t h e  computed po in t s  a t  which t h e  boundary conditions are 

satisfied. 

i, t h e  computed poin ts  -- j ;  vortex fi laments -- p; computed l i n e s  -- V;  

We s h a l l  designate t h e  number of t ransverse  v o r t i c e s  by 

and cross sec t ions  p a r a l l e l  to t h e  Ox axis -- k. The s i g n i f i c a n t  f a c t o r  
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i n  t h i s  arrangement is f i r s t l y  that t h e  computed po in t s  l i e  i n  t h e  

middle between the  v o r t i c e s  c loses t  t o  them. 

each band of k t h e  last  computed point lies c l o s e r  t o  t h e  t a i l  than 

t h e  last vortex. 

I n  t h e  second case, i n  

Generally speaking, the  se l ec t ion  of t he  r e q u i s i t e  amount of 

v o r t i c e s  on t he  wing m = nN and the t i m e  i n t e r v a l s  AT between t h e  com- 

puted moments is done independently. 

i t  is not advantageous t o  separa te  t h e  v o r t i c e s  i n t o  

vo r t i ce s .  Thus, i n  con t r a s t  t o  the cases indica ted  above, a t o t a l  l ayer ,  

which includes attached and f r e e  vo r t i ce s ,  and n o t  an attached layer ,  

is  simulated he re  by t h e  transverse v o r t i c e s  on t h e  wing a t  each moment 

of time. 

When the  c i r c u l a t i o n  i s  computed, 

f r e e  and attached 

Let  us discuss  i n  greater detail t he  t r a n s i t i o n  from the  changes 

i n  t h e  boundary condition which are continuous i n  t i m e  t o  

a step-wise change (Figure 3). We s h a l l  take t h e  times indica ted  by 

c rosses  as t h e  computed moments of t i m e ,  and w e  s h a l l  charac te r ize  them 

by t h e  number r 

They are chosen s o  t h a t  each of them d i r e c t l y  precedes t h e  moments 

a t  which the re  i s  a jump-like change i n  t h e  boundary condition, and 

consequently i n  t h e  c i r c u l a t i o n  of vo r t i ce s  on t h e  wing. These circula- 

t i o n s  are only computed a t  t h e  t i m e  T ~ ,  with allowance f o r  t h e  f a c t  

t h a t  -- during t h e  change from t h e  preceding computed moment t o  the  

subsequent computed moment -- the f r e e  v o r t i c e s  behind t h e  wing are 

8 



ca r r i ed  away below the  flow at t h e  distance UOM. 

A t  each computed moment of time, which is  characterized by r, t h e  

e n t i r e  vortex l aye r  on the  wing i s  replaced by a system of oblique 

vo r t i ce s ,  as is  shown i n  Figure 2. A system of f r e e  v o r t i c e s  behind 

t h e  wing is a l s o  produced by m e a n s  of t h e  oblique vo r t i ce s  whose posi- 

t i o n  with respect t o  the  wing has  not been f ixed ,  and changes f o r  

d i f f e r e n t  r. 

w i l l  be  t h e  same as f o r  t h e  last  vortex fi lament on the wing ~ . l  = n. 

Figure 2 shows t h e  vortex systems of t h e  wing i n  the  case of r = 1, 

when one f r e e  vortex fi lament p = n + 1 is formed behind t h e  wing, and 

i n  t h e  case of r = 2 ,  when the re  are two such fi laments (11 = n + 1 and 

p = n + 2).  

The sweepback angle of t h e  f r e e  v o r t i c e s  behind the  wing 

The pos i t i ons  of the transverse f r e e  v o r t i c e s  behind t h e  wing m u s t  

be se l ec t ed  s o  t h a t  t he  Chaplygin-Zhukovskiy condition is f u l f i l l e d  a t  

t h e  t r a i l i n g  edges of t h e  wing. 

t h e  attached 

This condition causes t h e  i n t e n s i t y  of 

vortex l a y e r  y+ a t  t h e  t r a i l i n g  edges t o  vanish. 

In order t o  f u l f i l l  t h i s  condition, i t  is  necessary t h a t  the  f r e e  

v o r t i c e s  behind t h e  wing are located a t  a l a rge  distance from t h e  last  

computed l i n e  v = n a t  t h e  computed moments of t i m e .  As computations 

have shown, t h e  Chaplygin-Zhukovskiy condition i s  f u l f i l l e d  i f  w e  se t  

AB = BC (Figure 2) .  

d i s t ance  between t h e  f r e e  vortex filament 1.1 = n + 1 and the computed 

l ine v = n is  equal t o  the  maximum d i s t ance  between the  vortex l i n e  

1.1 - n and the  l i n e  v = n. 

This means t h a t  w e  may assume t h a t  t h e  minimum 

9 
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The wing chord a t  each cross sec t ion  is  separated i n t o  

n equal sect ions.  The dis tance between the  adjacent vortex fi laments 

(Ref. 3) a t  each cross sec t ion  k w i l l  equal bk/n, and therefore  AB = 

= ?ib/n. 

In the  t i m e  A t  the  t ransverse f r e e  vortex passes through 

the  dis tance AC = U o A t .  Assuming t h a t  AB = BC = %AC, we f ind  

?rr c- f f a .  S T  = L'&t/b 

According t o  (1.1) and ( 2 . 2 ) ,  w e  obtain 

where tr and T~ a r e  the  dimensional and dimensionless computed 

t i m e s .  

3. Calculation of t h e  vortex pos i t ions  and computed points .  

The c i r cu la t ion  of each vortex will depend on t he  computed 

time, which can be characterized by t h e  number r f o r  a given number n 

of vortex fi laments on the  wing according t o  ( 2 . 4 ) ,  and the number of 

the  vortex i. It is more advantageous t o  def ine t h e  vor tex 'pos i t ion  on 

the  wing by two quan t i t i e s :  the  number of the  fi lament 1.1 and the  number 

of the  band ki, which correspondsto the  vortex i. Assuming t h a t  the  span 

1, of each t ransverse vortex is the same, we s h a l l  inves t iga te  the  dimen- 

s i o n a l  and dimensionless c i rcu la t ions  of t he  t o t a l ,  at tached and f r e e  / 5 5  

vor t i ces  on the  wing. 

The c i r cu la t ions  of f r e e  vor t ices  which descend from the  wing do not  

10 



change with t i m e .  Therefore, it can be assumed t h a t  they are dependent 

e i t h e r  on 1 ~ .  and k i  o r  on r and ki 

l % ! l - C r J J j ~ ~ ’ ,  fa-:  1 / p < n + r ,  l < k i < A ’ )  (3 .2)  

N is  the  number of bands i n t o  which the  semi-span of t h e  wing i s  

divided i n  formulas (3.1) and (3.2). 

Numbering t h e  t ransverse  vortices i and the  computed po in t s  j from 

r i g h t  t o  l e f t ,  beginning with = 1 and v = 1 (Figure 2 ) ,  w e  can write 

t h e  following f o r  t h e  wing of any form i n  a plane 

L e t  us der ive  the  re la t ionship  f o r  determining t h e  r e q u i s i t e  geometric 

parameters of a wing with constant sweepback over t h e  leading and t r a i l i n g  

edges (a wing of such a type is sham in Figure 2). 

b -- t h e  roo t  chord; bk -- t he  chord a t  the cross section k; h - the 

L e t  1 be the  span; 

wing aspect r a t i o ;  TI -- contraction; xo -- sweepback angle over the  

leading edge of t h e  wing; and $ -- sweepback angle of t h e  fi lament 1~.. 

W e  then have (Ref. 3) 
1’ 
S 

$= -, 

-- t h e  coordinates of the  middle of t h e  t ransverse  vor tex  i and the  com- 

puted poin t  j , respec t ive ly .  We then have (Ref. 3) 

11 
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Ei the r  ki o r  k .  may be subs t i t u t ed  i n  the  formulas, where k occurs 
J 

without an index. 

L e t  us t u rn  t o  vor tex  filaments behind the  wing ~ . l  = n + E ,  E =>l, 

...., r ,  which are obtained by t h e  parallel s h i f t  of t h e  fi lament 

v = n along t he  Ox axis by Eb/n. Retaining t h e  same no ta t ion  as was 

used f o r  t h e  wing, w e  would l i k e  t o  no te  t h a t  a l l  the  r e l a t ionsh ips  given 

above which do not  include ~ . l  remain unchanged. I n  addi t ion ,  w e  have 

( 3 . 6 )  x,,.~ -= x,, it  - 1. . . .. r )  

In accordance with these  considerations,  t he  following r e l a t ionsh ip  

holds (Figure 2) 
P. k rs..' = I. J - e;.'a 

L e t  us f i n d  t h e  expression for t h e  dimensionless coordinates i n  

which the  v e l o c i t i e s  (2.1) are computed at t h e  po in t  j ,  ca lcu la ted  both 

from the  vortex i,which is located on the  same ha l f  of Ithe wing, and from t h e  

vor tex  i' which is  symmetrical with i. Comparing t h e  coordinate systems 

/56 of Figures 2 and 4, a f t e r  t he  obvious transformations, we shal l  have 

(3 .7)  

When the  v e l o c i t i e s  from the f r e e  v o r t i c e s  behind the  wing are 
k i k j  

computed, t he  dimensionless coordinates 50 and (50 + 650) k k w i l l  

be determined by the  same formulas. 

i j  

According t o  ( 3 . 6 ) ,  w e  can write 

12 
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We thus have 

( e = i ,  . , .. (3.8) 

The dimensionless velocities (2.1), which correspond to the vortices 

i and i' and are computed by these arguments, can be designated by 

and we thus have 

Y . ~ + ~  = x,, (e =.I. . . ., r) t (3.10) 

4. Equations for circulation. 

Let us compile the equations for determining the dimensionless circu- 

lations of total vortices on the wing r 

the wing 6(r). At each computed moment T all of the total circulations 

on the wing must be determined anew, and only the circulations on the 

and the free vortices behind 
*1.Iki 

ki 

line 1~ = n + 1 are unknown for the free vortices. Thus, for any r, the 

number of the unknowns equals m + N (Figure 2). 
The superscript for 6(r) indicates that for any value of r, the 

k; L 

given free vortices occur on the line p = n + 1. In addition, these 

vortices converge below the flow, and their circulation does not change. 

Therefore, in the case of r = E, the following relationship is estab- 

lished between the number of the line behind the wing 1.1 and the circula- 

tion of free vortices 6 on it: 

13 



On t h e  b a s i s  of (2.1) and Figures 2 and 4 ,  we can write t h e  following 

f o r  t h e  ve loc i ty  produced by the  e n t i r e  vor tex  system of the  wing: 

( 4  1 )  

The pos i t i ve  d i r ec t ions  f o r  t h e  t o t a l  and f r e e  v o r t i c e s  are shown 

i n  Figure 2. 

The p lus  s ign  i n  these  formulas i s  chosen f o r  symmetrical c i rcu la-  

t i o n s ,  and t h e  minus s ign  is chosen f o r  c i r c u l a t i o n s  which are ant i -  

symmetric with respec t  t o  t h e  z = 0 plane. 

I n  order t o  determine them, w e  have t h e  conditions regarding smooth 

flow around the  wing (1.1) and the  c i r c u l a t i o n  of a l l  t h e  v o r t i c e s  on 

t h e  wing and behind it  equal l ing  zero at  each cross  sec t ion  ki = const 

f o r  any r. 

The boundary condition w i l l  be s a t i s f i e d  at  the po in t s  j f o r  t h e  

computed t i m e s  T r .  Therefore, t h e  r i g h t  p a r t  of t h e  equation 

w i l l  conta in  t h e  functions 

(4 .2 )  I?) - 
,f i~ - f (%.'&, L o k / h  G) 

Taking these  considerations i n t o  account, on the  b a s i s  of (1.11, - /57 

(4.1) and ( 4 . 2 ) ,  w e  obta in  the  following systems of a lgebra ic  l i n e a r  

equations : 

14 
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For each value of r ,  the  solut ion of these  systems is  performed 

independently, beginning with r = 1, and so on, f o r  consecutively in- 

creasing r. The unknowns w i l l  be r* (r) /c  and 6(r) /c ,  s ince  the  

quan t i t i e s  6 ( € )  /c w i l l  already have been found i n  the case of E < r. 

V i  k i  

k i  

5. Determination of attached vortex c i rcu la t ions .  

According t o  t h e  Zhukovskiy theorem "in t h e  s m a l l  region" (1.3), t he  

aerodynamic loads of t h e  wing may be expressed by t h e  c i r cu la t ion  of 

a t tached vor t ices .  

at tached vo r t i ce s  rVki from the  t o t a l  c i r cu la t ion ,  found above, on the  

wing r a t  each computed t i m e  T ~ .  

Therefore, we m u s t  f ind  the  c i r cu la t ion  of t h e  

+ k i  

I n  order t o  do t h i s ,  i n  each cross  sec t ion  k i t  is advantageous t o  

change from oblique vo r t i ce s  t o  s t r a igh t  vo r t i ce s  having the  same circula-  

t i o n  (Figure 6 ) .  It follows from (1.3) t h a t  these vortex systems produce 

the  same normal forces.  

L e t  us examine the  a rb i t r a ry  cross  sec t ion  ki (Figure 6).  I n  t h i s  

c ross  sec t ion ,  t he  dis tance between the  adjacent vor t ices  w i l l  be t h e  

same and w i l l  equal bk,/n.  L e t  us assume t h a t  Atk is  the  t i m e  during 
1 i 

which a f r e e  vortex,  which d r i f t s  a t  the  ve loc i ty  Uo, passes through the  

15 
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I . 
. 

i 

Figure 6 

indicated distance. Similarly to (1.1) and ( 2 . 4 ) ,  let us introduce the 

dimensionless quantities 

and let us 

On the one 

designate T as rki 
the computed moments of the cross section ki. 

Uo/b, and on the other hand Atk Ug = bki/n. 
i 

We then have 

As a result, we have a relationship, which is similar to (2.4) and 

which enables us to find the computed moments 

'C,  *k, 
rrki - - u b  

By analogy with (3.1), the dimensionless 

at each cross section ki 

( 5  3) 

circulations of total, 

attached, and free vortices on the wing at the times T will be 
rkz 
I 

('ki) (rki) (rki) . Let us take the direction shown Yr ' $ki designated by I' 
*Ftki ~ k i  

in Figure 2 for the total circulations as the positive direction for the 

first two vortices, and for the free vortices it is natural to take the 

16 
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(r) Based - /58  k *  inverse d i r e c t i o n  as t h e  p o s i t i v e  d i r ec t ion ,  j u s t  as f o r  6 

on the  d a t a  i n  Section 4 ,  we can readi ly  compute t h e  values of r (rki> 

by in te rpola t ion .  

t i o n ,  i t  is necessary t o  f i n d  those r f o r  which 

*Pki 

For t h i s  purpose, f o r  t h e  value of rk under considera- 
i 

Tr i' Tr,, < Trr I 9 QJ- 7 < rkibti;b -< r $- 1 

hold. 

The latter is obtained according t o  (2.4) and (5.3). 

Thus, t h e  s e l e c t i o n  of t he  values of r which are r e q u i s i t e  f o r  i n t e r -  

po la t ion  i s  done f o r  given rk on the b a s i s  of t h e  following inequal i ty  
i 

0 rei$,% - r < 1 
(5 9 4 )  

After t h i s ,  i f  -- f o r  example -- w e  confine ourselves t o  l i n e a r  

i n t e rpo la t ion ,  w e  may w r i t e  

(rki) 
L e t  us compute t h e  c i r cu la t ion  of t h e  attached vo r t i ce s  r 

are known. Since the  circu- 
(rki) 

assuming t h a t  t h e  t o t a l  c i rcu la t ions  I' 
*Vki 

l a t i o n  of t h e  attached vortex changes due t o  t h e  descent of t he  f r e e  

vortex,  w e  then have 

pi' - ' . t r # ; * - l ~  = 
Pl;i A, (5.6) 

The f r e e  v o r t i c e s  d r i f t  below along t h e  flow, and t h e  computed 

t i m e s  

traverse exac t ly  t h e  d i s t ance  between the  adjacent l i n e s  u and u + 1 

'Cki are se l ec t ed  s o  t h a t  during t h e  time between them t h e  v o r t i c e s  

17 
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I . 

(Figures 3 and 6).  

Therefore, at  the computed t i m e s  'ki there  w i l l  never be f r e e  

vo r t i ce s  on the  fi lament p = 1; on the  second fi lament,  there  w i l l  only 

vo r t i ce s  from the  f i r s t ,  on the  t h i r d  fi lament there  w i l l  only be vor- 

tices from the  second i n  t h e  case of rk 

from the  second and t h i r d ,  etc. Taking these considerations i n t o  

= 1; i n  the  case of Q = 2 -- 
i i 

account, w e  

On t h e  

formula f o r  

It may 

may w r i t e  

. . . . . . . . . . . . . . . . . . . . . . . 

b a s i s  of (5.6) and (5.7), w e  may obtain the  recurrence 

camputing the circulation of attached vo r t i ce s  

(5 7) 

be assumed t h a t  a l l  c i rcu la t ions  with non-positive indices  

equal  zero i n  formulas (5.6) - (5.8). 

6. Computation of wing aerodynamic cha rac t e r i s t i c s .  

F i r s t  of a l l ,  by in te rpola t ion  over t i m e  w e  must 

t o  I''r' -- t o  t h e  c i r cu la t ion  of attached vo r t i ce s  at  
Uki 

T~ which are the  same f o r  every wing. 

f i n d  T 

I n  order t o  do 

when t h e  following inequal i ty  is  f u l f i l l e d  rki' 

The latter holds according t o  (2.4) and (5.3). 

be 

(ai) 
change from r 

the  computed t i m e s  

t h i s ,  we  must a l so  

fo r  given T~ 

pki  

W e  can determine rk = 1, 2, . . . from (6 .l> f o r  t h e  values of r = 1 5 9  
i 

= 1, 2,  ... . After t h i s ,  confining ourselves t o  l i n e a r  in te rpola t ion ,  

18 



Figure 7 

f o r  example, we have 

O n  t he  b a s i s  of t he  Zhukovskiy theorem "in t h e  small region" (1.3), 

we may now read i ly  determine unsteady aerodynamic loads on the  wing, 

t h e  c ross  s e c t i o n  c h a r a c t e r i s t i c s ,  and t h e  t o t a l  coe f f i c i en t s  of t h e  

wing. 

W e  must take t h e  f a c t  i n t o  account t h a t  a t  each sec t ion  Ax = bki/n 

t h e  continuously d i s t r i b u t e d  layer  is  replaced by one d i s c r e t e  vortex. 

According t o  Figure 1, f o r  the supporting fo rce  and the  moments of 

t h e  wing, we  have expressions i n  which summation i s  performed over one 

H e r e  i is t h e  number of the  attached vortex; ASi -- t he  corresponding 

elementary sur face ;  xi, zi -- coordinates f o r  t he  middle of t h e  vortex. 

19 



Figure 8 

On t h e  b a s i s  of (1.3), w e  have 

Ap&')ASi = pUo'1p'':;' 

L e t  us introduce t h e  aerodynamic coe f f i c i en t s  

( 6 . 4 )  

where S is t h e  wing surface.  

( 6 . 4 ) ,  and (6.5) 

W e  then obta in  t h e  following from ( 6 . 3 ) ,  

h ' n  

c p  -; 3 r,p 
k i - 1  P - 1  ' 

Similar formulas hold f o r  t he  wing cross  sec t ion  coe f f i c i en t s  

W e  s h a l l  employ AY ( r )  ki and k&& (r) t o  designate the supporting fo rce  /60 
i 

and longi tudina l  moment with respect t o  t h e  Oz axis, produced i n  the  

20 



cross sec t ion  h. 
7. Examples. 

L e t  us present certain d a t a  characterizing t h e  i n t e r a c t i o n  of t he  

medium when the  wing changes smoothly from a zero angle of a t t a c k  t o  

t h e  angle a = a* f o r  an e q u i l a t e r a l  t r i angu la r  wing 1 and a rectangular 

wing 2 having t h e  same wing aspect r a t i o  A = 2.31. 

The l a w  f o r  t h e  change i n  the angle of a t t a c k  over dimensionless 

time has t h e  following form 
3 1 : ?  

+ = = I ,  (L<<<wj (7.1) --- a. " ' 1 3 -  _,sh a(5-I). io<: r : q .  

and i s  shown by the  dashed l i n e  i n  Figure 7. 

Figure 8 illustrates t h e  nature of the  i n t e n s i t y  d i s t r i b u t i o n  of 

attached vortex l aye r  on wing 1 i n  t h e  c ross  sec t ion  z* = 0.917 the 

loca ted  c lose  t o  the  end of the  wing, a t  d i f f e r e n t  moments i n  t i m e ,  

where Z = [ (y  + z)/a*Uo]bk/b. W e  have employed x '  t o  designate the  

d i s t ance  from t h e  leading edge t o  a poin t  i n  t h e  cross sec t ion  (x'/b 

= 0 -- spout and X'/bk 

= 
ki 

= 1 -- t r a i l i n g  edge of t h e  c ross  sec t ion ) .  
i 

Figure 7 shows a change in  the supporting force  c o e f f i c i e n t  and 

The ind ices  i n d i c a t e  f o r  which a s h i f t  i n  t h e  wing focus with t i m e .  

wing t h e  coe f f i c i en t s  are chosen. The dimensionless coordinates of 

t h e  focus are computed from t h e  spout of the mean aerodynamic chord 

and p e r t a i n  t o  t h i s  chord (Ref. 3). It should a l s o  be noted t h a t  t he  

dashed curve, besides t h e  dependence of u/a* on T, gives the  approxi- 

m a t e  l a w  f o r  t he  change i n  t h e  coe f f i c i en t  of supporting fo rce  

emanating from t h e  so-called hypothesis of s teadiness .  
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Figure 9 

Figure 10  

The influence of a vertical gust which is var i ab le  with t i m e  is 

examined f o r  a t r i angu la r  wing 3 and a rectangular wing 4 with t h e  wing 

aspec t  r a t i o  A = 2.5. It is  characterized by the  following r e l a t ionsh ip  

1 = i ,  :>O (7 2) j = : c ! ,  c < o ;  

Figure 9 (wing 3) and Figure 10 (wing 4) show the  m a n n e r  i n  which 

t h e  c e e f f i e i e n t  of t h e  supporting force  and the  pos i t i on  of the  focus 

change with time when a gus t  instantaneously encompasses t h e  wing ( s o l i d  

l i n e s )  and when the  wing gradually e n t e r s  t he  gust (dashed l i n e ) .  The 

d a t a  obtained from the  steadiness hypothesis are shown by the  dot-dash 

lines. 
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